

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS**1. Purpose**

This method is applicable for the analysis of cattle and deer serum for ivermectin. Serum samples are subjected to protein precipitation using acetonitrile followed by dispersive solid-phase extraction (dSPE) cleanup. An aliquot of the clarified extract is filtered and transferred for LC-MS/MS analysis. Ivermectin is confirmed by retention time and the presence of its characteristic parent/daughter ion transitions. Quantitation is performed using peak areas relative to a calibration curve constructed with matrix-matched standards and an isotopically labeled internal standard (ivermectin-d2).

2. Scope / Field of Application

Using the appropriate dilution factor, this method will accurately quantify ivermectin from 1 ng/mL to 250 ng/mL in cattle and deer serum when analyzed on either a Waters Xevo TQ-S micro or a Thermo TSQ Quantis/Altis LC-MS/MS system.

3. Definitions and Acronyms

Following terms and acronyms found in this protocol are defined as follows:

LC	Liquid Chromatography
HPLC	High Performance Liquid Chromatography
UPLC	Ultra-high Performance Liquid Chromatography
MS	Mass Spectrometry
MS/MS	Tandem Mass Spectrometry
SOP	Standard operating procedure (or protocol)
IVM	Ivermectin
IVM-d ₂	Ivermectin-d ₂
ACN	Acetonitrile
PVDF	Polyvinlidene Fluoride
WS	Work Solution
QC	Quality Control

4. Warning and Safety Precautions

Handle ACN, methanol, and formic acid in a fume hood. Follow laboratory PPE requirements. Dispose of organic waste according to chemical waste rules. All liquid waste is collected in 4 L bottles for disposal.

5. Reagents and Chemicals

All reagents are “reagent grade or better” or “HPLC grade” unless otherwise noted.

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS

Unopened solvents may be extended past their manufacturer expiration date for up to 1 year when solvent purity will not affect extraction efficiency, LC performance, or target analyte concentration. All solvents and mobile phase components are HPLC grade, unless otherwise noted. All aqueous solutions are made with deionized grade water of at least 18 MΩ quality. For hazards, refer to the appropriate SDS. Current manufacturers and product and lot numbers are listed in the ICN database

1. Acetonitrile.
2. Ammonium Acetate.
3. Formic acid.
4. Isopropanol.
5. Methanol.
6. Water.
7. Ivermectin, Millipore Sigma, Part # I8898-1G. CAS# 70288-86-7.
8. Ivermectin-d₂, Cayman Chemical, Part # 35345.

6. Equipment and Apparatus

1. Amber vial, 4 and 20 mL.
2. Analytical Balance – readability to 0.0001 g.
3. Beakers, assorted sizes.
4. Centrifuge, capable of accommodating 2 mL microcentrifuge tubes and reaching a minimum speed of 15,000 rpm.
5. Centrifuge tubes, 2 mL.
6. Centrifuge tube rack, capable of holding 96 of 2 mL tubes.
7. DisQuE, 150 mg MgSO₄, 25 mg PSA & 25 mg C18, 2 mL Tube, Part # 186004832.
8. Freezer, capable of maintaining a temperature range of -20 ±10°C, for reference standard storage.
9. Freezer, capable of maintaining a temperature range of -70 ±10°C, for sample storage.
10. Graduated cylinders, 2-4 L.
11. HPLC vials, amber screw neck, 12x32 mm with bonded pre-slit PTFE silicone septa (Waters or equivalent).
12. HPLC vial racks, capable of holding 50 of 12x32 mm vial.
13. UPLC Column, reverse phase, 100 x 2.1 mm (L x I.D.) and 1.7 µm particle size (Acquity UPLC BEH C18 or equivalent).
14. Lighting: the room in which sample preparation is performed should be equipped with special UV filtered lighting to prevent degradation of Ivermectin.
15. LC-MS/MS System, Waters XEVO-TQS, Thermo TSQ Quantis/Altis or equivalent.
16. Pipettes with respective tips: 200 µL, 1000 µL and 10 mL adjustable volume models (Eppendorf or equivalent);
17. Syringes, 5 mL disposable;

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS

18. Syringe filters, 13 mm 0.2 μ m PVDF filters or finer may be substituted as long as it does not compromise filtration, Whatman #6779-1304 or equivalent (Do not use nylon filters);
 19. Vortexer.

7. Solutions**A. Ivermectin Standard Solutions**

1. Stock Solution, 1 mg/mL - Weigh 0.0500 g \pm 0.0001 g of ivermectin and quantitatively transfer to a 50 mL amber volumetric flask. Fill to volume with methanol and mix well. Expiry is 1 month from the date of preparation. Store in freezer at -20°C \pm 10°C.
2. Intermediate Solution A, 10 μ g/mL - Pipette 50 μ L of 1 mg/mL of stock solution into a 5 mL amber volumetric flask. Fill to volume with methanol and mix well. Expiry is one week from the date of preparation. Store in freezer at -20°C \pm 10°C.
3. Intermediate Solution B, 1 μ g/mL - Pipette 500 μ L of 10 μ g/mL of work solution A into a 5 mL amber volumetric flask. Fill to volume with methanol and mix well. Expiry is one week from the date of preparation. Store in freezer at -20°C \pm 10°C.

B. Internal Standard Solutions

1. Stock Solution, 100 μ g/mL – 1 mg of ivermectin-d₂ was transferred to a 10 mL amber volumetric flask. Fill to volume with methanol and mix well. Expiry is 1 month from the date of preparation. Store in freezer at -20°C \pm 10°C.
2. Work Solution, 1 μ g/mL - Pipette 50 μ L of 100 μ g/mL of stock solution into a 5 mL amber volumetric flask. Fill to volume with methanol and mix well. Expiry is one week from the date of preparation. Store in freezer at -20°C \pm 10°C.

C. Ivermectin Work Solutions for Calibration Curve

Working solutions of ivermectin at 25, 50, 125, 250, 500 and 1250 ng/mL were prepared by appropriate dilution of the ivermectin intermediate A (Sections 7.A.2) or B solutions (Sections 7.A.3) methanol. All solutions are freshly prepared for each analytical batch.

Table 1. Preparation of Ivermectin Work Solutions for Calibration Curve

Solution	WS1	WS2	WS3	WS4	WS5	WS6
IVM Intermediate Solution used	A, 1 μ g/mL			B, 10 μ g/mL		
Volume of Intermediate added (μL)	25	50	125	25	50	125
Volume of methanol added (μL)	975	950	875	975	950	875
IVM in WS (ng/mL)	25	50	125	250	500	1250

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS**D. Ivermectin Work Solutions for Quality Control**

Working solutions of ivermectin at 75, 500 and 1000 ng/mL were prepared by appropriate dilution of the ivermectin intermediate A (Sections 7.A.2) or B solutions (Sections 7.A.3) with methanol. All solutions are freshly prepared for each analytical batch.

Table 2. Preparation of Ivermectin Work Solutions for Quality Control

Solution	QC-LS	QC-MS	QC-HS
IVM Intermediate Solution used	A, 1 µg/mL	B, 10 µg/mL	
Volume of Intermediate added (µL)	75	50	100
Volume of methanol added (µL)	925	950	900
IVM in WS (ng/mL)	75	500	1000

E. Other Solutions

1. Extraction Solution: ACN with 0.1% formic acid is prepared as follows:

Add 1 mL of formic acid to a mixture of 1000 mL of ACN and mix well. This solution may be prepared in multiples as needed. Expiry is 1 year from date of preparation or reagent expiry, whichever is sooner.

2. LC-MS/MS Mobile Phase solution A, 5 mM ammonium acetate/0.1% formic acid in water is prepared as follows:

Add 1 mL of formic acid and 315.3 mg of ammonium acetate to 1000 mL LCMS grade water. Mix thoroughly and filter the solution through a 0.2 µm nylon filter. This solution may be prepared in multiples as needed. Expiry is 1 year from date of preparation or reagent expiry, whichever is sooner.

3. LC-MS/MS Mobile Phase solution B, 0.1% formic acid in 95:5 acetonitrile:water is prepared as follows:

Add 1 mL of formic acid to a mixture of 950 mL of ACN and 50 mL of water. Mix thoroughly and filter the solution through a 0.2 µm nylon filter. This solution may be prepared in multiples as needed. Expiry is 1 year from date of preparation or reagent expiry, whichever is sooner.

4. LC-MS/MS Sample Manager/Purge Wash, 25% Methanol, 25% Isopropanol, 25% Acetonitrile, 25% Water is prepared as follows:

SOP	Quality System Procedure Office of the Texas State Chemist	DOC ID:	Revision 2
Title:	Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS		

Combine 500 mL of water, 500 mL of methanol, 500 mL of acetonitrile, and 500 mL of isopropanol. Expiry is 1 year from date of preparation.

NOTE: Solution is needed to rinse LC parts to prevent carry-over/cross- contamination but is not critical to the sample results unless the reservoir runs out causing system components to become contaminated with analyte.

8. Preparing Samples for Analysis

NOTE: These steps must be performed with the UV filtered lamps switched on, and normal lights turned off. Sun and normal light sources degrade the ivermectin and ivermectin-d₂. All serum samples must be kept at -70 ±10°C.

Pull samples, ivermectin work solutions (Sections 7.C and 7.D) and ivermectin-d₂ work solutions (Sections 7.B.2) from freezer; allow all materials to thaw completely at room temperature.

A. Preparation of Calibration Standards, Quality Controls, Matrix Blank and Samples.

1. Prepare matrix-match calibration standards at 1, 2, 5, 10, 20 and 50 ng/mL of ivermectin as follow:
 - a) Pipette 20 µL of the corresponding ivermectin work solutions (Sections 7.C) into 480 µL of drug-free cattle or deer serum.
 - b) Add 20 µL of the ivermectin-d₂ work solutions (Sections 7.B.2).
 - c) Mix thoroughly by vortex for 10 seconds.
2. Prepare quality controls at 3, 20 and 40 ng/mL of ivermectin as follow:
 - a) Pipette 20 µL of the corresponding ivermectin work solutions (Sections 7.D) into 480 µL of drug-free cattle or deer serum.
 - b) Add 20 µL of the ivermectin-d₂ work solutions (Sections 7.B.2).
 - c) Mix thoroughly by vortex for 10 seconds.
3. Prepare Matrix Blank.
 - a) Add 20 µL of the ivermectin-d₂ work solutions (Sections 7.B.2). into 500 µL of drug-free cattle or deer serum.
 - b) Mix thoroughly by vortex for 10 seconds.

SOP	<i>Quality System Procedure</i> Office of the Texas State Chemist	DOC ID:	Revision 2
Title:	Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS		

4. Prepare serum samples.
 - a) Add 20 μ L of the ivermectin-d2 work solutions (Sections 7.B.2). into 500 μ L of cattle or deer serum.
 - b) Mix thoroughly by vortex for 10 seconds.
5. Dilution of Samples Above the Calibration Range

If the measured ivermectin concentration in a sample is estimated to fall within 50–250 ng/mL, the sample may be analyzed after dilution as described below.

i. Sample Dilution

Mix 100 μ L of the original serum sample with 400 μ L of drug-free cattle or deer serum to obtain a 5-fold diluted sample.

ii. Internal Standard Addition

After dilution, add 20 μ L of the ivermectin-d2 work solutions (Sections 7.B.2) to each diluted samples.

B. Protein crash

- 1) Add 1.0 mL ice-cold ACN + 0.1% formic acid (Sections 7.E.1) into all samples.
- 2) Vortex 15 seconds, keep on ice (or 4 °C) for 5–10 min.
- 3) Centrifuge for 10 minutes at 15,000 rpm.

C. Dispersive cleanup (dSPE)

- 1) Transfer the supernatant into a DisQuE 2 mL dSPE tube.
- 2) Cap and vortex 15 s vigorously (ensure complete contact with sorbents).
- 3) Centrifuge for 5 min at 10,000 rpm.

D. Collect cleaned extract

Filter the supernatant with 0.2 μ m filtration to an amble HPLC vial.

SOP	<i>Quality System Procedure</i> Office of the Texas State Chemist	DOC ID:	Revision 2
Title:	Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS		

9. Instrument Analysis of Samples

1. Instrument set-up varies based on instrument:
 - a. In MassLynx, for Waters XEVO LCMS, select the ivermectin project and current tune file and in TraceFinder, for Thermo Quantis Plus LCMS, select the current ivermectin template.
 - b. Verify the UPLC mobile phase gradient and MS/MS conditions are correct using sections 2-4 below.
 - c. Load the appropriate template. Set up the data file with sample list. Start the sequence with several injections of solution containing analyte, mid-level standards and/or controls, injected to help stabilize the LC-MS/MS system. Quality controls should be run following the calibration curve/before samples, approximately every 10 samples, and at the end of the sequence. Confirm the samples, controls, blank, and reference standards are in the rack positions designated in the sample list.
2. UPLC conditions:

Load the appropriate run template, inlet method, and tune method. UPLC instrument parameters should be as follows:

 - a. Column: UPLC BEH C₁₈ 2.1x 100 mm, 1.7 µm (or equivalent).
 - b. Column temperature: 50°C; Sampler temperature: 10°C.
 - c. Run time: 10 min.
 - d. Injection volume: 10 µL.
3. Mobile phase and gradient conditions:
 - a. Mobile Phase A: 5 mM ammonium acetate/0.1% formic acid in water.
 - b. Mobile Phase B: 0.1% formic acid in 95:5 Acetonitrile:Water.
 - c. Gradient times and flow rates are as noted on the table below:

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS**Table 3. UPLC Gradient Times and Flow Rates**

Time (min)	Flow Rate (mL min-1)	A (%)	B (%)	Curve
Initial	0.3	20	80	6
0.10	0.3	20	80	6
7.00	0.3	20	80	6
7.10	0.4	2	98	6
8.50	0.4	2	98	6
8.51	0.3	20	80	6
10.00	0.3	20	80	6

Retention times on Waters Xevo:

Ivermectin: ~ 6.1 min

Ivermectin-d2: ~ 6.1 min

Retention times on Thermo Quantis Plus:

Ivermectin: ~ 6.0 min

Ivermectin-d2: ~ 6.0 min

These times may vary with slight fluctuations in mobile phase and UPLC conditions. Column pressure should be checked, gradient conditions should be verified, and column temperature should be confirmed if retention times are not consistent with previous run. Refer to system readiness section 12. If all conditions have been confirmed, the retention times may be adjusted as necessary.

4. MS/MS conditions - Set up the mass spectrometer by selecting the appropriate, tune file and ion mode, according to the following parameters:

NOTE: Global parameters not listed here may vary based on current mass resolution and calibration data.

a. Waters Xevo MS/MS

MRM transitions:

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS

Type	MRM						
Ion Mode	ES+						
Inter Channel Delay (sec)	Automatic						
InterScan Delay (sec)	Automatic						
Span (Da)	0.500						
Start Time (min)	5.0						
End Time (min)	8.0						
Ch	Prnt (Da)	Dau (Da)	Dwell (s)	Cone (V)	Coll (eV)	Delay (s)	Compound
1	892.60	307.20	0.100	25.00	20.00	Auto	Ivermectin
2	892.60	569.40	0.100	25.00	20.00	Auto	Ivermectin
3	894.60	309.20	0.100	25.00	20.00	Auto	Ivermectin-d2
4	894.60	571.50	0.100	25.00	20.00	Auto	Ivermectin-d2

Tune Settings:

Type	Start Mass	End Mass
MS2 Scan	50.00	1050.00
Source (ES+)	Settings	Readbacks
Capillary (kV)	3.00	0.08
Cone (V)	25.00	-1.71
Source Temperature (°C)	150	118
Desolvation Temperature (°C)	400	55
Cone Gas Flow (L/Hr)	70	69
Desolvation Gas Flow (L/Hr)	700	700

Collision cell pressure: Approximately 3.50 x e-3 reading

NOTE: extractor voltage, RF lens voltage and collision gas flow cannot be adjusted on the XEVO TQS micro. Capillary voltage, LM1 resolution, HM1 resolution, Ion energy 1, LM2 resolution, and Ion energy 2 will vary based on recent MS mass resolution and calibration settings.

b. Thermo Quantis Plus MS/MS**MRM transitions:**

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS

Compound	Retention Time (min)	RT Window (min)	Precursor (m/z)	Product (m/z)	Collision Energy (V)	RF Lens (V)	Min Dwell Time (ms)
IVM	6	4	892.7	307.1	24	167	748.245
IVM	6	4	892.7	569.1	15	167	748.245
IVM-d2	6	4	894.7	309.1	26	167	748.245
IVM-d2	6	4	894.7	571.1	15	167	748.245

Ion Source Settings:**Ion Source Type: H-ESI****Spray Voltage: Static****Positive Ion (V): 3200****Negative Ion (V): 2500****Current LC Flow (µL/min): 0****Sheath Gas (Arb): 50****Aux Gas (Arb): 10****Sweep Gas (Arb): 1****Ion Transfer Tube Temp (°C): 325****Vaporizer Temp (°C): 350****Instrument Notes:**

- i. All chromatographic and mass-spectrometric settings used in this method were optimized to meet internal performance requirements and were verified during routine preventative maintenance and instrument calibration.
- ii. The retention time windows, collision energies, and the selected precursor/product ion transitions were established during method development and validation.
- iii. Retention time windows may be adjusted as needed to compensate for column aging or to improve chromatographic resolution, provided that all target analyte and internal-standard peaks remain clearly defined.
- iv. Collision energies may be refined to enhance ionization efficiency or signal response.
- v. Precursor and product ion target masses may be optimized within ± 0.9 m/z of the exact mass, without exceeding the next whole-number value (e.g., for an exact mass of 892.7, acceptable target masses fall between 892.0 and 892.9).
- vi. Any adjustments made to improve chromatographic or detection performance must comply with the acceptance criteria outlined in the method's Quality

SOP	Quality System Procedure Office of the Texas State Chemist	DOC ID:	Revision 2
Title:	Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS		

Assurance Plan.

vii. Modifications that would significantly alter method performance require equivalency evaluation and prior approval from laboratory management.

10. Sample Set

The injection sequence outlined below may be adjusted as necessary; however, all required controls must be included. System suitability must be established prior to initiating the sample batch.

- 1) Solvent Blank
- 2) Matrix Blank (negative control)
- 3) Quality control (positive control)
- 4) Samples up to a maximum of 20
- 5) Reinjection of quality control

11. Calculation

The injection sequence outlined below may be adjusted as necessary; however, all required controls must be included. System suitability must be established prior to initiating the sample batch.

$$\text{Ivermectin} = \text{CR} \times \text{Ds} \text{ (ng/mL)}$$

Where:

CR = Instrument reading amount based on peak area ratio of IVM vs IVM-d2

Ds = Dilution Factor of Samples

The limit of quantitation of the method is 1 ng/mL.

12. Data Acceptability Criteria

Analytical data generated under this method must meet the acceptance criteria listed below before results can be reported. Failure of any required criterion must be evaluated, documented, and resolved prior to data release. Re-injection, re-extraction, or instrument troubleshooting may be required.

SOP	<i>Quality System Procedure</i> Office of the Texas State Chemist	DOC ID:	Revision 2
Title:	Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS		

1. System Suitability

System suitability must be demonstrated prior to analysis of samples.

- a) System pressure: Within \pm 4200 psi of historical operating pressure.
- b) Stability injections: Initial injections of mid-level standards or controls must show stable retention times and peak shapes for both ivermectin and ivermectin-d2.
- c) Blank injections: Solvent and matrix blanks must show no detectable ivermectin above 1/10 of the response of the lowest calibration standard.

2. Calibration Curve

- a) The calibration curve must contain all required levels and must be constructed using matrix-matched standards spiked with internal standard.
- b) Correlation coefficient (R^2): ≥ 0.990 (instrument software and MS Excel calculation).
- c) Each calibration point must back-calculate to $\pm 15\%$ of its nominal concentration, except the lowest standard which may be $\pm 20\%$.
- d) Internal standard response must be present and stable across the curve; IVM-d2 response factor > 1000 .

3. Matrix Blank

- a) Matrix blank must be free of ivermectin at or above: $\leq 10\%$ of Standard 1 response.
- b) Internal standard peak must be present and within the expected response range.

4. Quality Control Samples

Quality controls (low, mid, and high) must be included at the beginning of the run, approximately every 10 samples, and at the end of the run.

- a) QC results should fall within 85–115% of their nominal concentrations, except for low QC results should fall within 80-120% of their nominal concentrations.
- b) Mean QC bias across all QC levels must remain within 85–115%.
- c) QC failure requires evaluation; affected sample results cannot be reported until QC performance is acceptable.

5. Sample Data Quality

SOP	Quality System Procedure Office of the Texas State Chemist	DOC ID:	Revision 2
Title:	Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS		

Retention times for ivermectin and ivermectin-d2 must be within the established windows for the instrument platform used.

- a) Peak shape must be symmetrical and well-resolved from background noise.
- b) Internal standard response must be present and within the range seen for standards and QCs.
- c) Samples requiring dilution must have final values corrected by the dilution factor (Section 8).

6. Re-Analysis and Corrective Action

- a) Re-analysis is required when any of the following occur:
- b) Calibration curve or QC criteria are not met.
- c) Internal standard response is absent or significantly suppressed.
- d) Chromatographic peak abnormalities (poor shape, split peaks, co-elution).
- e) Retention time shifts outside established acceptance windows.
- f) Blank contamination exceeds allowable limits.

Corrective actions may include system maintenance, column flushing or replacement, re-injection, or full sample re-extraction.

13. References

1. **USDA Food Safety and Inspection Service (FSIS).** *CLG-AVR2.00: Ivermectin and Abamectin Residue Analysis by LC-MS/MS*. Office of Public Health Science, Chemistry Laboratory Guidebook. (2024).
2. Croubels, S., De Baere, S., Cherlet, M., & De Backer, P. *Determination of ivermectin B1a in animal plasma by liquid chromatography combined with electrospray ionization mass spectrometry*. **Journal of Mass Spectrometry**, 37, 840–847 (2002).
3. De Sousa, F. G., et al. *LC-MS/MS Determination of Macroyclic Lactones in Biological Matrices*. **Molecules**, 27(3), 998 (2022).
4. Pérez, R., Godoy, C., Palma, C., Cabezas, I., Muñoz, L., Rubilar, L., Arboix, M., & Alvinerie, M. *Plasma Profiles of Ivermectin in Horses following Oral or Intramuscular Administration*. **Journal of Veterinary Medicine, Series A**, 50, 297–302 (2003).

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS**14. Appendix**

Representative chromatograms for ivermectin and ivermectin-d₂ are shown below

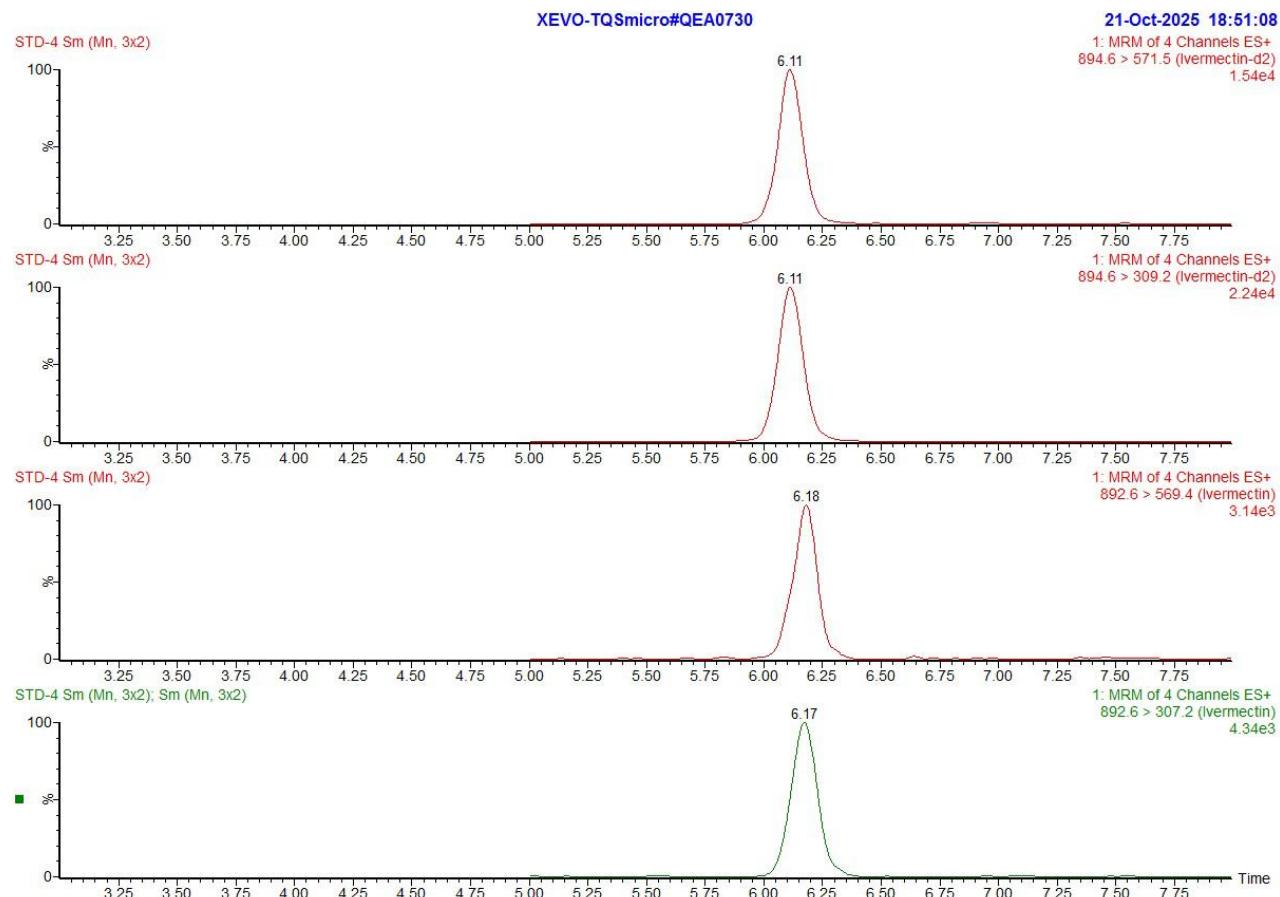


Figure 1 Chromatogram of IVM and IVM-d2 in Calibration Standard on Waters Xevo

Title:

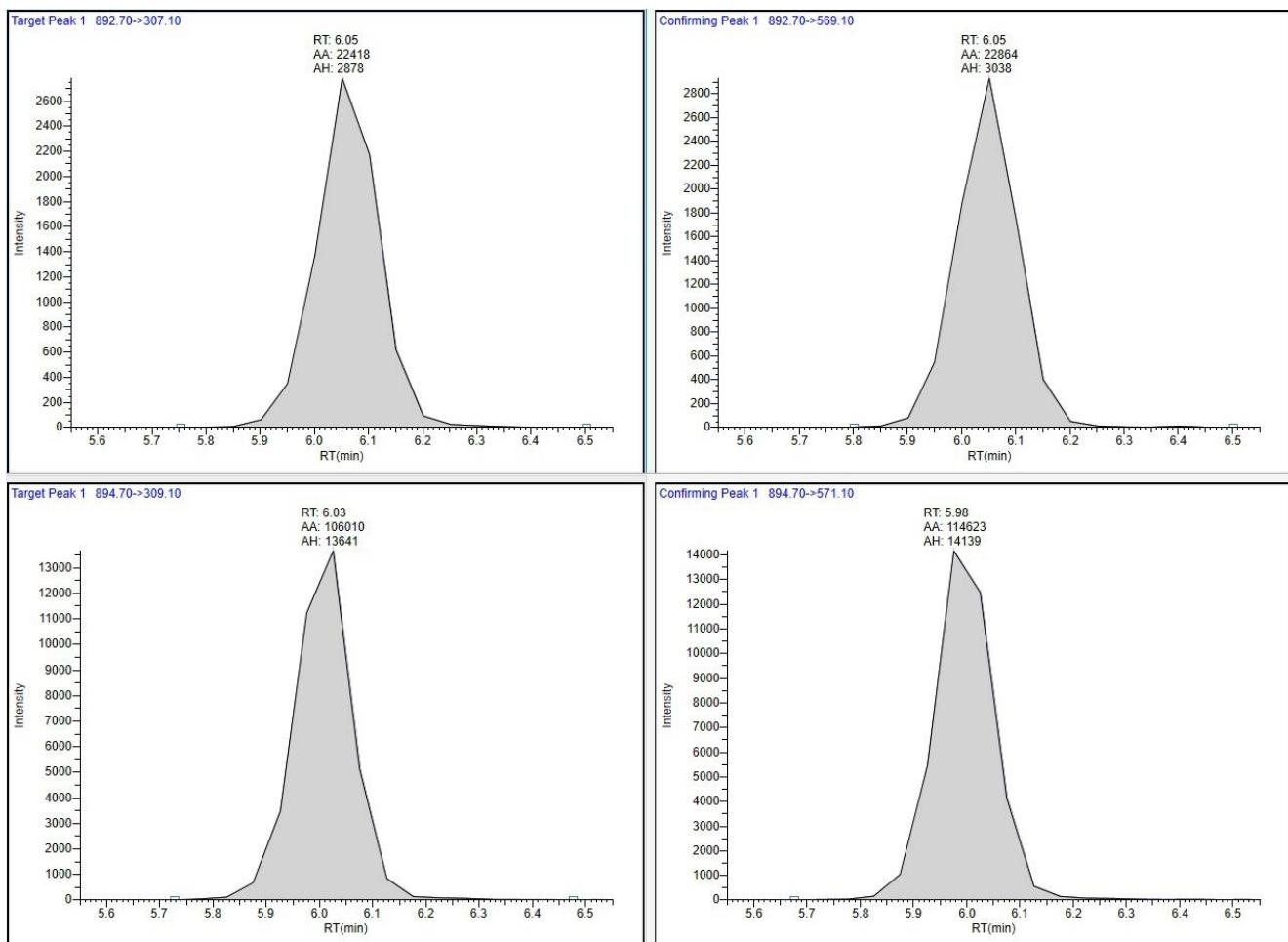

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS

Figure 2 Chromatogram of IVM and IVM-d2 in Calibration Standard on Thermo Quantis Plus

Title:

Determination of Ivermectin in Cattle and Deer Serum by LC-MS/MS**15. Revision History**

The first version 12/01/2025

The second version 01/15/2026